Distance-2 MDS codes and latin colorings in the Doob graphs
نویسندگان
چکیده
The maximum independent sets in the Doob graphs D(m,n) are analogs of the distance-2 MDS codes in Hamming graphs and of the latin hypercubes. We prove the characterization of these sets stating that every such set is semilinear or reducible. As related objects, we study vertex sets with maximum cut (edge boundary) in D(m,n) and prove some facts on their structure. We show that the considered two classes (the maximum independent sets and the maximum-cut sets) can be defined as classes of completely regular sets with specified 2by-2 quotient matrices. It is notable that for a set from the considered classes, the eigenvalues of the quotient matrix are the maximum and the minimum eigenvalues of the graph. For D(m, 0), we show the existence of a third, intermediate, class of completely regular sets with the same property.
منابع مشابه
MDS codes in Doob graphs
Аннотация The Doob graph D(m, n), where m > 0, is the direct product of m copies of The Shrikhande graph and n copies of the complete graph K 4 on 4 vertices. The Doob graph D(m, n) is a distance-regular graph with the same parameters as the Hamming graph H(2m + n, 4). In this paper we consider MDS codes in Doob graphs with code distance d ≥ 3. We prove that if 2m + n > 6 and 2 < d < 2m + n, th...
متن کاملOn the number of maximum independent sets in Doob graphs
The Doob graph D(m,n) is a distance-regular graph with the same parameters as the Hamming graph H(2m+n, 4). The maximum independent sets in the Doob graphs are analogs of the distance-2 MDS codes in the Hamming graphs. We prove that the logarithm of the number of the maximum independent sets in D(m,n) grows as 2(1+o(1)). The main tool for the upper estimation is constructing an injective map fr...
متن کاملPerfect $2$-colorings of the Platonic graphs
In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and the icosahedral graph.
متن کاملFurther results on the classification of MDS codes
A q-ary maximum distance separable (MDS) code C with length n, dimension k over an alphabet A of size q is a set of qk codewords that are elements of An, such that the Hamming distance between two distinct codewords in C is at least n− k+1. Sets of mutually orthogonal Latin squares of orders q ≤ 9, corresponding to two-dimensional q-ary MDS codes, and q-ary one-error-correcting MDS codes for q ...
متن کاملUpper bounds on sets of orthogonal colorings of graphs
We generalize the notion of orthogonal latin squares to colorings of simple graphs. Two n-colorings of a graph are said to be orthogonal if whenever two vertices share a color in one coloring they have distinct colors in the other coloring. We show that the usual bounds on the maximum size of a certain set of orthogonal latin structures such as latin squares, row latin squares, equi-n squares, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1510.01429 شماره
صفحات -
تاریخ انتشار 2015